Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

L. Mihiri D. Ariyananda^a and Richard E. Norman^{a,b}*

^aChemistry Department, CNSB-210, University of Louisiana at Monroe, LA 71209, USA, and ^bDepartment of Chemistry, Box 2117, Sam Houston State University, Huntsville, TX 77341, USA

Correspondence e-mail: norman@shsu.edu

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.005 Å Disorder in main residue R factor = 0.073 wR factor = 0.161 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-{[*N*-(Pyridinium-2-ylmethyl)-*N*-(pyridin-2-ylmethyl)amino]methyl}-1-(pyridin-2-ylmethyl)pyridinium diperchlorate

The cation of the title salt, $C_{24}H_{25}N_5^{2+}\cdot 2ClO_4^{-}$, contains a tris(2-pyridylmethyl)amine core in which one of the pyridine N atoms is protonated and a second pyridine N atom forms an additional C–N bond to another 2-pyridylmethyl group, resulting in a second pyridinium center. The protonated pyridinium hydrogen bonds to a pyridine ring of a neighboring dication. The hydrogen-bonded H atom is disordered between the two N atoms.

Received 7 July 2005 Accepted 18 July 2005 Online 23 July 2005

Comment

During an attempt to prepare an Mn^{II} tpa complex [tpa is tris(2-pyridylmethyl)amine] by reacting manganese(II) chloride tetrahydrate with H₃tpa(ClO₄)₃ and triethylamine in methanol, the title compound was produced. The preparation of [Mn(tpa)Cl₂] has been reported (Allen *et al.*, 1995) under a nitrogen atmosphere, but the structure has not been reported. So far, our attempts to prepare the title compound, (I), under metal-free conditions by reaction of 2-picolylchloride hydrochloride with tpa [produced by *in situ* deprotonation of H₃tpa(ClO₄)₃] have been unsuccessful.

The structure of (I) consists of two perchlorate anions (which have typical distances and angles) and a dication, shown in Fig. 1. The dication contains a tpa core structure in which two of the pyridine N atoms share a proton and a third pyridine N atom forms an additional C–N bond to another 2pyridylmethyl group, resulting in a second pyridinium center. There is a hydrogen bond between the partially protonated pyridinium N atom of one dication and the pyridine N atom of an adjacent molecule [the N2···N3ⁱ separation is 2.706 (3) Å; see Fig. 2; symmetry code as in Table 2]. The H atom is disordered across the hydrogen bond. Thus, in the tpa core,

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of (I), with displacement ellipsoids drawn at the 50% probability level. Both N2 and N3 are shown protonated, although the proton is shared by them.

Figure 2

A view of two dications of (I), showing the hydrogen bonding. The disordered H atoms, bound to N2 and N3, are shown in violet. The prime corresponds to symmetry code (i) in Table 2.

two of the pyridine rings are half protonated and the third is alkylated.

There are no obvious trends in the distances and angles of the various pyridine rings in (I), and the values are typical of other tpa structures (*e.g.* Britton *et al.*, 1991; Hazell *et al.*, 1999). The distances and angles of the 'extra' 2-pyridylmethyl group are also typical.

Experimental

Triethylamine (0.1513 g, 1.495 mmol) and H_3 tpa(ClO₄)₃ (0.2956 g, 0.4995 mmol) were dissolved in methanol (20 ml). Manganese(II) chloride tetrahydrate (0.0989 g, 0.500 mmol) was added with stirring, producing a clear yellow solution. Colorless crystals formed after a few days. M.p. 445–449 K. ¹H NMR (300 MHz, D₂O): 4.07 (6H), 5.91 (2H), 7.22 (*d*, 1H), 7.34 (*t*, 1H), 7.47 (*t*, 2H), 7.54 (*d*, 2H), 7.81 (*t*, 1H), 7.89 (*t*, 1H), 7.97 (*t*, 2H), 8.19 (*d*, 1H), 8.24 (*d*, 1H), 8.44 (*d*, 2H), 8.48 (*d*,1H), 8.70 (*d*, 1H).

Crystal data

 $C_{24}H_{25}N_5^{2+}\cdot 2ClO_4^{-1}$ $D_x = 1.466 \text{ Mg m}^{-3}$ $M_r = 582.40$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 8603 a = 13.9313 (2) Å reflections b = 10.9888 (2) Å $\theta = 2.5 - 32.0^{\circ}$ c = 18.1280 (4) Å $\mu = 0.30 \text{ mm}^{-1}$ $\beta = 108.0650 \ (8)^{\circ}$ $T=100~{\rm K}$ V = 2638.38 (8) Å³ Prism, colorless $0.20 \times 0.12 \times 0.10 \ \text{mm}$ Z = 4

Data collection

Nonius KappaCCD diffractometer ω scans with κ offsets Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor 1997) $T_{min} = 0.869, T_{max} = 0.955$ 48722 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.161$ S = 0.944740 reflections 352 parameters

Table 1

Selected geometric parameters (Å, °).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C6	1.462 (3)	N3-C11	1.351 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C12	1.472 (3)	N4-C13	1.360 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-C24	1.462 (3)	N4-C17	1.338 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C1	1.339 (4)	N5-C18	1.480 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N2-C5	1.349 (4)	N5-C19	1.360 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N3-C7	1.350 (4)	N5-C23	1.351 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-N1-C12	111.1 (2)	N3-C7-C8	121.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-N1-C24	110.2 (2)	N3-C11-C10	119.1 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-N1-C24	110.0 (2)	N3-C11-C12	117.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-N2-C5	119.1 (2)	N1-C12-C11	111.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-N3-C11	121.6 (2)	N4-C13-C14	123.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13-N4-C17	116.3 (3)	N4-C17-C16	123.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18-N5-C19	118.2 (2)	N4-C17-C18	117.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18-N5-C23	121.1 (2)	N5-C18-C17	112.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19-N5-C23	120.7 (2)	N5-C19-C20	121.3 (3)
$N_2 - C_5 - C_4$ 121.4 (2) $N_5 - C_{23} - C_{24}$ 117.3 (2) $N_2 - C_5 - C_6$ 116.2 (2) $N_1 - C_{24} - C_{23}$ 112.8 (2)	N2-C1-C2	122.0 (3)	N5-C23-C22	119.4 (2)
N2 C5 C6 $1162(2)$ N1 C24 C23 $1128(2)$	N2-C5-C4	121.4 (2)	N5-C23-C24	117.3 (2)
$n_2 = c_3 = c_0$ $n_1 = c_2 = c_2 = n_1 = c_2 = c_2 = n_1 = c_2 $	N2-C5-C6	116.2 (2)	N1-C24-C23	112.8 (2)
N1-C6-C5 112.7 (2)	N1-C6-C5	112.7 (2)		

9091 independent reflections

 $R_{\rm int}=0.055$

 $\theta_{\rm max} = 32.1^{\circ}$

 $h = -20 \rightarrow 20$

 $k = -16 \rightarrow 13$

 $l = -26 \rightarrow 25$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.77 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

4740 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o) + 0.003025|F_o|^2]$

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1\cdots N3^{i}$	0.95	1.79	2.706 (3)	162

Symmetry code: (i) -x, -y, -z + 1.

Atom H1, the H atom associated with N2, was found in a difference map, and then placed in a calculated position. During subsequent refinement, atom H26, the H atom associated with N3, was observed in a difference map. Atoms N2 and N3 are the hydrogenbonded pair of N atoms. Consequently, both H atoms were placed in calculated positions with half occupancy, and assigned displacement parameters 0.6 times those of N2 and N3 (N-H = 0.95 Å). All of the other H atoms were assigned displacement parameters 1.2 times those of the atoms to which they are bound and were treated as riding in idealized positions (C-H = 0.95 Å). The perchlorate anions are probably disordered, as reflected by the large displacement parameters. Attempts were made to model this disorder with various O atoms with partial occupancy, but the resulting models produced unreasonable distances and angles. The current model is reasonably well behaved and the Cl-O distances fall in the range 1.427 (3)-1.429 (3) Å for Cl1, and 1.391 (3)–1.444 (4) Å for Cl2.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction:

SCALEPACK and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *TEXSAN for Windows* (Molecular Structure Corporation, 1999); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN* for Windows.

We thank Frank Fronczek for data collection and the Louisiana Board of Regents Support Fund for financial support.

References

- Allen, C. S., Chuang, C.-L., Cornebise, M. & Canary, J. W. (1995). *Inorg. Chim.* Acta, 239, 29–37.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Britton, D., Norman, R. E. & Que, L. Jr (1991). Acta Cryst. C47, 2415–2417.
- Hazell, A., McGinley, J. & Toftlund, H. (1999). J. Chem. Soc. Dalton Trans. pp. 1271–1276.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1999). *TEXSAN for Windows*. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.